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ABSTRACT

The objective of the present study is to make a database that describes the leaching- 
permeability behavior of collapsible gypseous soil. The data will be implemented to 
develop ANN prediction models for predicting the saturated coefficient of permeability 
and percentage of solubility by weight. The complex soil behavior and tedious and time 
consume in soil testing have driven researchers to use Artificial Neural Network (ANN) as 
tool for prediction. The objectives of the study were to investigate leaching-permeability 
behavior of collapsible gypseous soils and to develop ANN models for estimating the 
saturated coefficient of permeability and solubility of the soils. The MATLAB R2015a 
software was used to predict the saturated coefficient of permeability and the solubility 
percentage by weight of gypseous soils. The dataset used in this work included (513) 
records of experimental measurements extracted from leaching-permeability tests conducted 
on gypseous soil samples taken from Baher Al-Najaf in Iraq. Four input variables were 
investigated to have the most important influence on the permeability and solubility 
percentage by weight. According to the achieved statistical analysis, the ANNs model have a 

reliable capability to find out the predictions 
with a high-level of accuracy. The gypseous 
soils exhibited a high rate of dissolution 
of soluble minerals content, which caused 
increase in the coefficient of permeability as 
the soil samples reach the state of long-term 
full saturation.  

Keywords: Artificial neural networks, electric 
conductivity, gypseous soil, leaching-permeability 
tests, MATLABR2015a, solubility of gypsum, total 
dissolved salts



Imad Habeeb Obead, Hassan Ali Omran and Mohammed Yousif Fattah

108 Pertanika J. Sci. & Technol. 29 (1): 107 - 122 (2021)

INTRODUCTION 

Collapsible soils or metastable soils are unsaturated soils that undergo a considerable 
volume change upon saturation with or without additional load. Generally, collapsible soils 
maintain an open “honey-combed” structure that can induce negative pore water pressure 
and cementing agents that result in considerable shear strength. As a result of wetting, 
effective stresses are reduced due to the dissipation of the negative pore water pressure.

The prevalent of Gypseous soils of higher gypsum content (more than 25%) for shallow 
depth less than 2 m according to Barazanji (1973) with particularly northwest and southwest 
parts of Iraq. Also, for lower content of gypsum in the central and southern parts of Iraq, it 
is the major problem. This was pointed out in the surrounding area of hydraulic structures 
in specific, and constructions in general.Numerous researchers investigated and discussed 
the many factors influencing the behavior of gypseous soils and their hydro-mechanical 
properties. 

Ibrahim and Schanz (2017) examined the improvement of gypsiferous soil properties 
by using silicone oil to minimize the effects of moisture and gypsum loss. The work was 
conducted on artificial gypsiferous soil (30% Silber sand and 70% pure gypsum) treated 
with silicone oil in different percentages. Silicone oil was selected as an additive because 
of leakages of oil-related products from an oil refinery north of Iraq built on gypsiferous 
soil. Thus, this oil product provided a suitable analogue for oil that had infiltrated the 
foundation soil of the refinery buildings. The results showed that the silicone oil was 
a suitable material for modifying the basic properties of the gypsiferous soil, such as 
collapsibility and shear strength.

Fattah and Dawood (2020) tried to investigate the behavior of the gypseous soils and 
the effect of factors on the collapsibility characteristics such as initial conditions. Three 
types of gypseous soils had been experimented in this study, sandy gypseous soil from 
different parts of Iraq. Large-scale model with soil dimensions (700*700*600) mm was 
used to show the effect of water content-changes in different relations (collapse, stress and 
suction with time relations). The study showed that the collapse-potential, the soil-suction 
and the soil-strength were affected by the initial-conditions (water-content and dry unit 
weight). The collapse potential for all soil types increased when the water content increased 
due to a reduction in matric suction of the soil. The small value of the collapse that was 
obtained for all models was related to a number of factors such as dense condition, high 
compaction, capillary tension and cementing agent between soil particles. All these reasons 
make soil strong and more rigid to collapse. 

The study carried out by Ashour et al. (2020) included large numbers of sandy and 
silty specimens of collapsible soils with different initial conditions to develop a correlation 
that evaluated the collapse potential Cp of the soil due to inundation. The presented model 
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reflected the significant influence of degree of saturation Sr on Cp of inundated soil which 
considerably decreased by the increase of Sr. The determined properties of inundated 
collapsed soil, such as void ratio and angle of friction were employed to construct the 
post-inundation stress-strain curve. Comparisons between predicted and measured stress-
strain curves of inundated collapsible soils were presented for validation. A brief review 
of some of these ANNs related researches is be presented in this paper.

Al-Janabi (2006) utilized multilayer perception training using the back propagation 
algorithm to build two ANN models, one for dissolved gypsum (DG) and the other for 
leaching strain (L.S). It was found that ANNs had the ability to predict the dissolved gypsum 
and leaching strain through process in gypseous soils with a good degree of accuracy. 

Sinha and Wang (2008) presented artificial neural network models relating to 
permeability, maximum dry density and optimum moisture content as output variables with 
classification properties of the soils. Their study was based on the experimental results 
for samples of clayey soil. They introduced three ANNs models, one for each maximum 
dry density, optimum moisture content and coefficient of permeability. In addition to the 
combined ANNs model to estimate the above output variables together. The prediction 
models showed good accuracy. 

Al-Ani et al. (2009) used artificial neural networks to relate the properties of gypseous 
soils and evaluated the values of compression of soils under different conditions of soaking 
and washing. ANNs were used for modeling the settlement ratio for wetting process, 
(S/B)w, and the settlement ratio for soaking process, (S/B)s (where S is the settlement of 
footing of width B and w and s refer to washing and soaking, respectively). It was found 
that ANNs had the ability to predict the compression of gypseous soil due to soaking and 
washing process with high degree of accuracy. The results also showed that the initial 
gypsum content, stress level and time had smaller impact on the settlement ratio than 
other variables. It was concluded that the ANNs had  the ability to predict the (S/B)w and 
(S/B)s of gypseous soil with high degree of accuracy. The equations obtained using ANNs 
for (S/B)w and (S/B)s showed excellent correlation with experimental results where the 
coefficients of correlation were (0.9541) and (0.991), respectively. 

Tizpa et al. (2015) presented ANNs prediction models that correlated compaction 
parameters, permeability, and shear strength with the soil index characteristics that could be 
measured easily. They utilized the datasets of the geotechnical laboratory of the University 
of Bahia in Brazil. Their obtained results showed high accuracy for ANNs prediction models 
when compared with the experimental datasets.

The objectives of the study were to investigate leaching-permeability behavior of 
collapsible gypseous soils and to develop ANN models for estimating the saturated 
coefficient of permeability and solubility of the soils.
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MATERIALS AND METHODS

Materials and Testing Procedures 
The leaching-permeability experiments were carried out on disturbed mixed soil specimens 
taken from Baher Al-Najaf west of Iraq, the gypsum content ranged between 17% and 
36%. Hydraulic experiments of leaching – permeability were conducted to investigate the 
saturated permeability and solubility of soil specimens. The soil samples were remolded to 
match the natural soil condition, i.e., the field density state. In this work, the soil specimens 
were leached in the constant head permeameter, initially carried out by permitting the soil 
specimen to saturate by maintaining the same water level in the inlet and outlet. Then, 
the water level in the inlet was raised and preserved at a constant level to output flow at a 
specific hydraulic gradient. A hydraulic gradient of 6.67, corresponding to a head of 1.0 m 
was considered to produce a significant fluctuation in groundwater elevation in the studied 
area. The testing procedures used by Ismael (1993) and Ismael and Mollah (1998) were 
modified to suit the present work conditions.

The testing procedures were conducted according to Ismael (1993) and Ismael and 
Mollah (1998). The samples were 70 mm in diameter and 150 mm in height, the main 
parts of the leaching device used comprised of constant head permeameter, water reservoir, 
and graduated cylinder to collect the leached water. The soil samples were poured inside 
the permeameter cylinder in layers with the vibration to reach the desired field density. 

Figure 1. Experiment setup for permeability-
leaching tests

Water from the reservoir was passed through 
the specimen at its bottom to drain at the 
top in order to simulate the soil saturation in 
the field due to rising of ground water table. 
Readings for total dissolved salts (TDS), 
temperature, pH, and electrical conductivity 
(EC) of the of leachate discharge that was 
accumulated in cylinder every one hour 
during the experiment period. The variations 
in the above parameters were recorded and 
used to evaluate the degree of salts dissolution 
of the soil samples. Leaching was assumed 
to have been terminated when the reading 
of these measuring units showed no further 
decrease. The experiments were conducted 
utilizing the setup shown in Figure 1. 

The leaching period extended for seven 
days per each tested soil sample, the process 
in the laboratory was accomplished using 
ordinary drinking water.
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Three devices were used to measure the dissolved materials, namely: the EC214 an 
electrical conductivity meter, and two portable devices which were the total dissolved-
solids tester (TDS) and pH tester as shown in Figure 2. They were manufactured by Hanna 
Instruments Company, Romania.

Figure 2. (a) EC; (b) TDS; and (c) pH value testers

(a) (b) (c)

Artificial Neural Network Technique

The artificial neural networks (ANNs) are preferably suitable for use in the field of water 
resources and geotechnical engineering since it can make use of heuristic knowledge or 
pattern matching method instead of resolving the mathematical equations. ANNs considered 
as computational tools that have the ability to learn with time and adjust the trend of 
varying of definite parameter in an explicit data (Al-Lamy, 2008). The ANNs structure 
and operation contain of a number of artificial neurons identified as” nodes” or “units “that 
is typically organized in layers namely; input layer, output layer and one or more hidden 
layers as shown in Figure 3.

According to Shahin et al., (2001) 
and Sinha and Wang (2008), the above 
architecture is termed multilayer perceptrons 
(MLPs) that consist of three layers ANNs, 
which is the furthermost widely used in 
geotechnical engineering. In this study, the 
four input variables per each site involved 
to implement the ANNs model are; total 
dissolved salts (TDS) expressed in part per 
millions (ppm), electric conductivity (EC) 
in ms, time (t) in hrs, and temperature of 
leachate (T) in °C. Consequently, the input 

Figure 3. Structure and operation layout of the 
neural networks
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layer contains four neurons. A typical neural network was established in this study in 
MATLABR2015a software in which, the saturated coefficient of permeability (Ksat.), and 
the solubility of the gypsum (S) which were expressed as weight percentage and trained 
with the input variables. The leaching-permeability test results were analyzed together with 
the percentage of solubility of gypsum to be used as dataset as listed in Table 1 to develop 
the artificial neural network models.

Table 1
Descriptive statistics of gypseous soil parameters used in the permeability and solubility models

Site 
No.

Parameter
Statistics

Ksat.

(cm/s.)
S%

by wt.
TDS

(ppm)
EC
(ms)

T
(OC)

#1

Max. 1.502×10-2 24.421 1577.0 3.440 24.40
Min. 2.148×10-3 0.517 1261.0 2.450 22.30
Mean 8.61×10-3 14.973 1425.643 2.831 23.001
Standard deviation 2.818×10-3 5.955 65.057 0.20 0.464

#2

Max. 2.59×10-2 8.754 1529.0 3.360 23.0
Min. 2.01×10-3 1.772 1419.0 2.90 21.500
Mean 2.07×10-3 7.008 1447.526 3.092 22.071
Standard deviation 4.37×10-3 1.287 23.061 0.124 0.374

#3

Max. 2.91×10-3 7.280 1503.0 3.306 21.60
Min. 2.10×10-3 4.072 1461.0 2.94 20.41
Mean 2.69×10-3 6.546 1472.942 3.193 21.126
Standard deviation 2.24×10-4 0.784 9.294 0.081 0.346

RESULTS AND DISCUSSION

The results of physical and chemical properties of the natural soil samples are presented 
in Table 2. 

During leaching, the leached soil sample is subjected to progressive dissolution of 
soluble salts within the soil matrix, the leaching effect becomes clearer in soils of high 
gypsum content. This is due to the fractional abstraction of soluble materials, and the 
inter-particle binding related to it. The losses in the original weight of the soil sample after 
starting of the leaching process can be idealized mathematically as Equation 1:

𝑊𝑛 = 𝑊∘ − 𝑊ℓ 						      [1]

where, Wn= the new weight of soil sample after the leaching process at time step ∆t, (N),
Wο= the original weight of soil sample before the leaching process, (N) and
Wl = the weight lost from soil sample after the period of ∆t from starting of the leaching 
process, (N).
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Table 2
Summary of physical properties and chemical tests for the natural soil samples (after Fattah et al., 2019)
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1 1.417 1.25 0.79 20.50 78.90 0.58 1.80 40.11 0.117 8.0 SP, Poorly graded 
sand with gravel

2 1.507 1.13 0.63 4.35 88.20 7.45 0.43 20.42 0.107 8.22
SP- SM, Poorly 

graded clean sand 
with silt

3 1.404 0.83 0.78 12.45 84.60 2.95 2.60 28.98 0.097 8.15 SP, Poorly graded 
sand

* Averaged values for soil samples per each site

Based on the principle of conservation of mass and due to the dissolution of gypsum 
and other soluble salts in the soil matrix, the dissolved salts will be diffused in the solution 
(Equation 2).

tQWl ∆=γ 						      [2]

where, γ = the unit weight of leachate in (F/L3),
Q = the flow rate of water through soil sample in (L3/T), and
∆t = time step in (T).
Simplifying Equation 2 yields Equation 3 and Equation 4:

txAiKxW satl ∆= .γ 					     [3]

where, Ksat. = saturated coefficient of permeability for the soil in (L/T),
i = the hydraulic gradient (dimensionless), and
A= the cross sectional area of the soil sample in (L2).

𝑊ℓ = (𝑇𝑇𝑇𝑇𝑇𝑇𝐿 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑤) × 𝐾𝐾𝑠𝑎𝑡.𝑖𝐴× ∆𝑠𝑠 			   [4]

where, 𝑊ℓ = (𝑇𝑇𝑇𝑇𝑇𝑇𝐿 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑤) × 𝐾𝐾𝑠𝑎𝑡.𝑖𝐴× ∆𝑠𝑠 = the total dissolved salts in the leachate in F/L3, and 
𝑊ℓ = (𝑇𝑇𝑇𝑇𝑇𝑇𝐿 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑤) × 𝐾𝐾𝑠𝑎𝑡.𝑖𝐴× ∆𝑠𝑠= the total dissolved salts in the water in F/L3. The range for TDSw considered 

in this work is 590 to 630 ppm for a range of temperatures (22 to 24.5oC).   
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Rearranging both sides of Equation 4 for the next time step, gives Equation 5:  

𝑊𝑙𝑡𝑗+1 = 𝑊𝑙𝑡𝑗 −𝐾𝐾𝑠𝑎𝑡.𝑖𝐴× (𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝑡𝑗+1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑤)(𝑠𝑠𝑗+1− 𝑠𝑠𝑗�	 [5]

where, Wltj = the weight of soil sample leachate from the previous time step.
Substitution Equation 4 in Equation 1, then the net weight of leachate soil at the end 

of leaching process can be expressed as Equation 6:

𝑊𝑛 = 𝑊∘ − 𝑖𝐴× � 𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝑗 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑤)(𝑠𝑠𝑗+1− 𝑠𝑠𝑗

𝑗=𝑛

𝑗=0

×𝐾𝐾𝑠𝑎𝑡 .	 [6]

The percentage of the soluble weight at any time of leaching periodpointed out as 
solubility percentage (Equation 7):

% 𝑇𝑇𝑏𝑦 𝑤𝑡.
𝑡𝑗+1 =

𝑊ℓ
𝑡𝑗+1

𝑊𝜊
× 100 					    [7]

where, % 𝑇𝑇𝑏𝑦 𝑤𝑡.
𝑡𝑗+1  is the percentage of the soluble weight, and 

tj+1 is the time step within leaching period at which removal weight is calculated.
It is noticed that Equation 5 may use an average value of Ksat. that is obtained at the end 

of the leaching period. For more precise results, the value of Ksat. could be measured and 
used at the end of each time step from the starting of the leaching process as adopted in 
Equation 6.  Figure 4 presents the removal or soluble weight (averaged at one day intervals 
up to seven days testing period of leaching process) due to the dissolution of minerals 

Figure 4. Removal weight for gypseous soil from different sites with leaching time
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from leached soil sample versus time of leaching for the three sites. The original weights 
of soil samples before the leaching process per each site were 6.29 N, 6.69 N, and 6.24 N, 
respectively. Figure 4 shows the variation of removal weights from gypseous soil samples 
taken from different sites.

Results from Figure 4 show increasing the dissolution with time for soils at both sites 
#1 and #3 before roughly reaching a steady value. While for site #2, the dissolution was not 
increased significantly with time and the trend was maintained constant. The initial content 
of gypsum and the presence of perceptible content of chloride salts play a significant role 
as they change during the leaching process. In addition, the mutual interaction of soluble 
salts leads to a higher increase of the solubility rates that implies the expansion of voids 
and increasing the soil’s permeability, while for field condition, the permeability probably 

Figure 5. Variation of TDS of gypseous soils from different sites with leaching time

Figure 6. Variation of EC of gypseous soils from different sites versus leaching time
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decreases as a consequence to the collapse of soil structure under the impact of applied 
loads (Fattah et al., 2019). Figure 5 to 8 show the variations of studied parameters [i.e., 
TDS in ppm, EC in ms, the percent the percent of solubility S% by weight, and saturated 
coefficient of permeability (Ksat.) in cm/s.] with leaching time.  

The TDS and EC versus time curves at different sites are shown in Figure 5 and 6, 
respectively. It is evident that TDS and EC measures decreased rapidly to around (20% and 
29%) for site # 1 throughout the seven days of leaching process, whereas the measured TDS 
and EC values decreased slightly to about 7% and 11% for site #2 and the rates were about 
2.2% and 1.9% for site #3. It is expected that the infiltrated water into the soil specimen for 
each site dissolved the concentrated soluble salts causing the release of ions and elements, 
which affected the electric conductivity of the leachate, but this did not reflect the similar 
declining trend for all sites. Eventually, the rapid trends of decrease were more widely clear 
for site #1 than those of the other sites as it is obvious from Figure 5 and 6, respectively. 
The initial gypsum content was lumped and compacted on grains of sand and gravel. Later, 
the leaching process caused structural weakness and loss of the bonds provided by gypsum. 
The voids were enlarged and occupied by the increased water as stated by Nashat (1990).

Figure 7 shows the variations of the coefficient of permeability under saturated 
condition versus leaching time. The initial value of steady-state coefficients of permeability 
was around a value of 1.5×10-3 cm/s per each site, the rates of increase in Ksat. were 1.4%, 
2.4% and 0.07% for these sites, respectively. The higher rate for site #2 was probably 
attributed to the progressive erosion of fines due to piping. In addition to the dissolution 
of salts contributed to a weight loss of this sample. Despite that the Site #2 samples had a 
rather lower gypsum content (Table 2). 

Results in Figure 8 reveal the percentage of solubility for three different sites versus 
time. It is evident that the Site #1 sample yielded higher %S of 24.2% in comparison with 
7.0% and 3.1% for Sites #2 and #3, respectively. Subsequently the soil samples taken from 
site #1, which had the higher content of soluble minerals as given in Table 2, then lost 
more gypsum/salt by weight. The pH measurements of the leachate from the soil samples 
taken from three sites investigated in this work were roughly constant as given in Table 2. 
These results are indicating the slight sensitivity of the pH values of the various contents 
of soluble salts. The pH measurements of the leachate from the soil samples taken from 
three sites investigated in this work were roughly constant as given in Table 2. These 
results indicate the slight sensitivity of the pH values for various contents of soluble salts.

As noticed from the forgoing results and discussion, in addition to results given in Table 
3, the traditional nonlinear correlation equations for permeability and solubility per each 
site are proposed. The results showed that prediction model of the saturated coefficient of 
permeability did not provide strong relation. Hence, there is a difficulty to develop a general 
precise model for permeability and/or solubility via the traditional statistical techniques 
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in order to correlate overall affecting variables to include the studied sites although that 
the data include sufficient geotechnical and chemical properties in addition to the gypsum 
contents.

Comparisons between Figure 4 to 8 reveals that the decrease in TDS and EC with 
time was related to the increase of removal of soil weight, saturated permeability, and 
solubility percent.

Collapse may not induce the real problem of collapsible soil because full saturation of 
soil samples is not maintained. Fattah et al. (2017) concluded that the collapse potential 
resulted from complete wetting of soil layer might not be achieved in the field, due to the 
inability to reach full saturation state through a single step wetting. Therefore, the multi-
step wetting procedure is more convenient due to the slowly rising of ground water by 

Figure 7. Variation of Ksat.of gypseous soils from different sites with leaching time

Figure 8. Variation of %S of gypseous soils from different sites with leaching time
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capillary forces, especially in the low rainfall regions. So that, the results of leaching are 
more appropriate to present the problem of collapsible soil.

Estimation of the Separated ANN Models for Ksat. and S% by Weight

Determination of the ANNs architecture is considered as a major and difficult objective 
in ANN’s model derivation (Shahin, 2003). Four variables were involved as input, the 
throughout dataset consisting of 513 samples which were divided into two subsets as 
training set and test set, thus randomly about 11% of the throughout data (56 inputs) were 
extracted as test set, the remaining 457 inputs or 89% of the over data were used as training 
set. The neural network properties used in this study were as follows. The training network 
type was a feed-forward back propagation technique. The multilayer perceptron network 
was adopted including three layers, four to ten neurons were experienced in order to reach 
to the best number of neurons in hidden layer per each model, the models consisted of eight 
neurons. The training function is “TRAINGDX” which updates weights and bias values 
by gradient descent rule to back- propagation errors through the network, the transfer 
(activation) function is ”LOGSIG” which calculates a layer’s output from its net input. A 
detailed demonstration of this function is available in the literature such as Shahin (2003). 
The performance of training was maintained by the mean squared error (MSE) criterion 
for an epochs number of 1000. The architecture of an ANN for estimating both Ksat. and 
S% by weight is shown in Figure 9.

Table 3
Traditional correlation models

Site
No.

Dependent
Variable Correlation Model

Coefficient of 
Determination

(R2)

Site 

No. 

Dependent 

Variable  
Correlation Model 

Coefficient of 

Determination 

(R2) 

#1 

Ksat. (cm/s.) 
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 .(𝑇𝑇𝑇𝑇𝑇𝑇) = −4.0 × 10−4𝑇𝑇𝑇𝑇𝑇𝑇 + 0.0707 0.9876 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 .(𝐸𝐸𝐸𝐸) = 0.0127𝐸𝐸𝐸𝐸20.0861𝐸𝐸𝐸𝐸 + 0.1501 0.9418 

%S  
%𝑆𝑆 (𝑇𝑇𝑇𝑇𝑇𝑇) = −0.0004𝑇𝑇𝑇𝑇𝑇𝑇2 + 0.9501𝑇𝑇𝑇𝑇𝑇𝑇 − 587.98 0.8986 

%𝑆𝑆(𝐸𝐸𝐸𝐸) = −28.429𝐸𝐸𝐸𝐸 + 95.334 0.929 

#2 

Ksat. (cm/s.) 
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 .(𝑇𝑇𝑇𝑇𝑇𝑇) = −1.0 × 10−6𝑇𝑇𝑇𝑇𝑇𝑇2 + 0.0026𝑇𝑇𝑇𝑇𝑇𝑇 − 1.7556 0.9374 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 .(𝐸𝐸𝐸𝐸) = −0.1393𝐸𝐸𝐸𝐸2 + 0.8334𝐸𝐸𝐸𝐸 − 1.2226 0.8074 

%S  
%𝑆𝑆 (𝑇𝑇𝑇𝑇𝑇𝑇) = −0.0545𝑇𝑇𝑇𝑇𝑆𝑆 + 85.835 0.9524 

%𝑆𝑆(𝐸𝐸𝐸𝐸) = −36.511𝐸𝐸𝐸𝐸2 + 216.93𝐸𝐸𝐸𝐸 − 314.12 0.8719 

#3 

Ksat. (cm/s.) 
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 .(𝑇𝑇𝑇𝑇𝑇𝑇) = 487.28𝑒𝑒−0.008𝑇𝑇𝑇𝑇𝑇𝑇  0.7721 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 .(𝐸𝐸𝐸𝐸) = −0.4831𝐸𝐸𝐸𝐸2 + 3.1041𝐸𝐸𝐸𝐸 − 4.9833 0.9605 

%S  
%𝑆𝑆 (𝑇𝑇𝑇𝑇𝑇𝑇) = 1 × 1009𝑒𝑒−0.013𝑇𝑇𝑇𝑇𝑇𝑇  0.8171 

%𝑆𝑆(𝐸𝐸𝐸𝐸) = 1438.1𝐸𝐸𝐸𝐸3 − 13933𝐸𝐸𝐸𝐸2 + 44975𝐸𝐸𝐸𝐸 − 48364 0.5277 
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Statistical Evaluation of the ANN Models

In this study, some statistical approaches were used to evaluate the ANN models, these 
statistics are coefficient of correlation (R), root mean square error (RMSE), and coefficient 
of residual mass (RM).

The coefficient of correlation (R) can be calculated as Equation 8:

𝑅 =
∑ 𝑥𝑖 − 𝑋� 𝑦𝑖 − 𝑌�𝑛
𝑖=1

∑ 𝑥𝑖 − 𝑋� 2∑ 𝑦𝑖 − 𝑌� 2𝑛
𝑖=1

𝑛
𝑖=1

			   [8]

where, xi is the desired (measured) output, xi = x1, x2, …..,xn, yi is the model (predicted) 
output, yi = y1, y2, ….., yn, X�, and Y� and X�, and Y� are the mean measured and predicted output, respectively, 
and n is the number of data. 

The root mean square error (RMSE) can be calculated as Equation 9:

𝑅𝑀𝑇𝑇𝐸𝐸 =
∑ 𝑦𝑖 − 𝑥𝑖 2𝑛
𝑖=1

𝑛
				    [9]

The coefficient of residual mass (RM) can be determined as Equation 10 (Tizpa et 
al., 2015):

𝑅𝑀 = 1−
∑ 𝑦𝑖𝑛
𝑖=1 

∑  𝑥𝑖𝑛
𝑖=1

					     [10]

The coefficient of correlation is a measure that is used to determine the relative 
correlation and the goodness of fit between the predicated and measured data; while, 
the RMSE is the most popular measure of error and has the advantage that large error 
receives much greater attention than small errors (Al-Lamy, 2008). Tizpa et al. (2015) 
stated that the RMSE expressed the residual error variance; if the output fitted a dataset, 

Figure 9. Architecture of ANN model predictions for Ksat. and S% by weight
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its value was minimum. When the value of RMSE is lower, the accuracy of the predicted 
model accordingly is higher, for the value RMSE is equal zero, a perfect fit is the case. 
The coefficient of residual mass, RM, is a different analysis of the measured and predicted 
outputs. The ideal value of RM is zero, whereas negative values indicate overestimation 
and vice versa. For evaluating the overall validity of ANN prediction models, assessments 
were performed by the ANN training regression plots as shown in Figure 10 that shows 
the comparing values for the coefficient of correlation between training and testing of the 

Figure 10. Neural network training regression of ANN model for the coefficient of permeability: (a) Training 
for Ksat. model; and (b) Test of Ksat. model

(a) (b)

Figure 11. Neural network training regression of ANN model for the solubility percentage by weight: (a) 
Training for Ksat. model; and (b) Test of Ksat. model

(a) (b)
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Table 4
Models evaluation criterion

Statistics 
Model R% RMSE RM

Ksat. (cm/s.) 99.9912 3.41×10-04 7.16×10-04

S% by weight 99.93 0.1957 1.52×10-04

model. It is evident that acceptable correlation is obtained, and Figure 10 indicates a good 
correlation since R approaches to unity. Also, a perfect agreement was obtained between 
the measured and predicted values as indicated by the overall correlation coefficient.

Figure 11 shows the training regression plots for ANN model of the percent of 
solubility S% by weight. Results of Figure 11 reveal that as for Ksat. model, a higher 
correlation is obtained between the training and testing of the S% model. As well as, a 
complete covenant between the measured and predicted values occurs as shown by the 
overall correlation coefficient.

Table 4 summarizes the statistical evaluation criterion for both ANN models. It can 
be noticed that acceptable values for the statistic parameters are obtained. It is concluded 
that strong correlations for prediction of both Ksat. and S% could be obtained.

CONCLUSIONS

Based on the results of this study, the following conclusions may be drawn:
•	 The gypseous soils exhibited a high rate of dissolution of soluble minerals content, 

which caused increase in the coefficient of permeability as the soil samples reached 
the state of long-term full saturation.  

•	 Artificial neural networks had the capabilities to predict the saturated coefficient of 
permeability (Ksat.) and solubility percentage by weight (S) as a function to TDS, 
EC, T, and t of gypseous soil with higher accuracy according to the statistical 
parameters as the coefficient of correlation ranged between 99.99% and 99.93%. 

•	 The leaching-permeability behavior of collapsible gypseous soils had been dealt 
with to develop ANN models for estimating the saturated coefficient of permeability 
and solubility of the soils. The datasets used in the model development had involved 
significantly the most influencing factors that might affect both the permeability 
of gypseous soils and solubility percentage which were TDS, EC, the temperature 
of leachate (T), and leaching time (t) of gypseous soil. These factors are usually 
faced in the practice of engineering.
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